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Abstract—Within the S.Co.P.E. italian national
projects, a multidisciplinary collaboration be-
tween computational and chemical engineering
scientists was established with the aim of de-
veloping three dimensional simulations of fluido-
dynamic processes. The computing environment
relies on PETSc (Portable, Extensible Toolkit
for Scientific Computation [1]) components inte-
grated with the TFEM (Toolkit for Finite Element
Method [3]) software toolkit, for discretization
and solution of the partial differential equation-
based model describing the physical processes. We
discuss first computational efforts, experiments,
numerical and performance results on the basis
of selected test cases.

Index Terms—parallel computing, fluid dynam-
ics simulations, PETSc.

I. INTRODUCTION

N many technological applications, solid

fillers of different shape, size and chem-
istry are added to fluids in order to implement
functional changes which result in a reduction
of process costs or, more frequently, in an
improvement of mechanical performance of the
final product.

The presence of solid fillers in fluids, which
often exhibit themselves a complex rheologi-
cal behavior, involves other phenomena which,
from an applicative point of view have a strong
impact on the reliability and the quality of
the final product. For instance, the tendency of
particles to aggregate and to form ordered struc-
tures leads to different filler distribution within
the fluid: such behavior should be avoided when
the aim of the process is to produce composite
materials of high toughness and strength. There-
fore, to understand the onset and the evolution
of such phenomena is of primary importance for
the investigation and construction of materials
satisfying the application requirements.

To this aim a multidisciplinary collaboration
between computational and chemical engineer-
ing scientists in the contest of the S.Co.PE.
Italian national projects was established in or-
der to carry on computational simulations of
such 3D fluydo-dynamics processes on high end
computing infrastructures. The results of this
work can be used as the starting point of future
applications in industrial processes such as flow
intubation and injection molding.
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Scientific simulation is an integrated pro-
cess. It is also an iterative process, in which
computational scientists traverse several times
a hierarchy of issues in modeling, discretiza-
tion, solution, code implementation, visualiza-
tion and interpretation of results, and compar-
ison to expectations (theories, experiments, or
other simulations). They do this to develop
a reliable scientific instrument for simulation,
namely a marriage of a code with a computing
and user environment.

One loop over the computational process is
related to validation of the model and verifi-
cation that the simulation process is correctly
describing the model. The other loop over the
process of simulation is related to algorithm and
performance tuning. A simulation that yields
high-fidelity results is of little use if it is too ex-
pensive to run or if it cannot be scaled up to the
resolutions, simulation times, or ensemble sizes
required to describe the real-world phenomena
of interest. With some oversimplification, algo-
rithm tuning poses the question, Are we getting
enough science per operation?

During or after the validation of a simulation
code, attention must be paid to the perfor-
mance of the code in the target computing
environment. Efforts to control discretization
and solution error in a simulation may grossly
increase the number of operations required to
execute a simulation, far out of proportion to
their benefit. Often adaptive strategies must be
adopted for the simulation to be execution-
worthy on an expensive massively parallel com-
puter, even though these strategies may require
highly complex implementation.

It is clear that a scientific simulation depends
upon numerous components, all of which have
to work.

In this paper we describe first computational
efforts towards the development of software
tools needed to the computational simulation
of fluido-dynamic applications to harness the
computational power of high performance com-
puting (HPC) environments.

The computing environment that supports the
simulation software relies on PETSc (Portable,

Extensible Toolkit for Scientific Computation
[1]) components integrated with the TFEM
(Toolkit for Finite Element Method [3]) soft-
ware toolkit, employed to discretize and solve
numerical problems deriving from partial differ-
ential equation-models.

In particular, we discuss the integration of
TFEM modules inside the PETSc parallel data
structures, the introduction of the parallelism
inside the discretization step, the validation of
numerical results and performance gain on the
basis of a test case [2].

II. FROM THE MATHEMATICAL MODEL TO
THE DESIGN OF THE NUMERICAL
ALGORITHM

A. The mathematical model

The problem that we consider consists of a
single sphere in a sheared viscoelastic fluid.
Assuming incompressibility, negligible inertia,
and buoyancy free conditions the governing
equations are the continuity (mass balance) and
momentum balance equations, plus a constitu-
tive equation depending on the nature of the
suspending liquid:

V-v=0 (1)
V-o=0 )
o=-pl+2n;D+r 3)

where v is the velocity, o is the stress tensor, p
is the pressure, I the unity tensor, D = (Vv +
VoT) /2 is the rate-of-deformation tensor, 7, is
the solvent viscosity and 7 is the constitutive
extra stress.

The polymer stress, T, is given written as:

=21 )

where c is the ‘conformation tensor’, 7, is the

polymer viscosity, and \ is the relaxation time.
We will model the viscoelastic fluid with the

Giesekus constitutive equation (for c):

Aede—TI+ale—I% =0 (5

where « is the so-called mobility parameter
that modulates the shear thinning behavior. The
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symbol (V) denotes the upper-convected time
derivative, defined as:

ZE%—FU'VC—(VU)T-C—C-V’U (6)

A sphere of radius R is located between two
plates moving along the z-direction in different
sense with an imposed shear rate . Shear flow
conditions are imposed on the external fluid
boundaries.

The sphere is located at the center of the gap
and symmetry implies that it can only rotate.
We assume that the sphere is torque-free, or
“freely rotating”, i.e. its rotation is only due to
the motion of the surrounding fluid. Thus, the
torque-free boundary condition at » = R is:

/ rxo-ndA=0 @)
a5,

where 0.5, is the sphere surface, n is the normal
at the sphere surface, r the position vector
from the sphere center and the integral of the
local torque r x o - ndA spans the sphere
surface. Due to the symmetry of the imposed
shearing flow, only the vorticity component z
of Eq. (7) is relevant, the other two components
being identically zero. In fact, the velocity at the
sphere surface is known, and can be written as:

v(R,t) =w(t)e, x R (8)

e, being the unit vector along z. The particle
angular velocity, w(t), is, however, unknown
and it depends on the nature of the fluid.

B. Weak form

The governing equations are solved by the
finite element method on a cell containing a
single sphere at the center of the cell. A fic-
titious domain is used [4] together a rigid-
ring description of the particle [5], since inertia
is neglected. A log-conformation representation
for the conformation tensor has been used: the
original equation for the conformation tensor
c, Eq. (§), is transformed to an equivalent
equation for s = log(c), leading to a substantial
improvement of stability (see [7] for details).
To further improve the numerical stability a

DEVSS-G formulation is implemented [8] for
the momentum balance and the SUPG tech-
nique [6] is used for the constitutive relation.

Under these assumptions, a weak form can
be stated as follows: Fort > 0, find v € U,p €
P s € S,G € Hw € N\ € L*(0S,) such
that:

/ 2nsD(u) : D(v)dV —/ V- -updV+
1% 1%

/ np(Vu) : Vo dV—/ n,(Vu) - GT dV+
1% v

(u— (x % 1), Nos, = —/VD(u) rdV.
)

/qV-vdeo, (10)
1%

/H:GdV—/ H: (Vv)lav =0, (11)
14 14

/V(S+TU-VS):

(% +v-Vs—g(G, s)) dv =0, (12)

(1, v — (W x7))as, =0, (13)

s=s8y att=0, inV, (14)

for al w € U, g € P, S €¢ S, H € H,
x € R and p € L*(0S,), where U, P, S,G
are suitable functional spaces. The 7 parameter
in Eq. (12) is given by 7 = Sh/2U., where 3 is
a dimensionless constant, & is a typical size of
the element and U, is a characteristic velocity
for the element. Finally, we take the initial value
of sg = 0, corresponding to zero initial stress.

Notice that the angular velocity, w, is treated
as an additional unknown and is included in the
weak form of momentum equation. Only the z-
component of w is set different to zero since,
for the symmetry of the problem, the sphere can
rotate around the vorticity axis only. The torque-
free condition is imposed through the Lagrange
multipliers, A.
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C. Numerical model and algorithm

For the discretization of the weak form, we
use hexahedron elements and a continuous bi-
quadratic interpolation (Q)2) for the velocity v,
bilinear continuous interpolation (Q)1) for the
pressure p, linear continuous interpolation (@)
for velocity gradient G and bilinear continuous
interpolation (()1) for the log-conformation ten-
sor s. We discretize the boundary of the particle
using the weak constraints. Then, discretization
of Eq. (13) gives to:

(B, v — (WX 7))as, =

/ pelv—(wxr)]dA (15)
85,

Regarding the time discretization, initially,
the viscoelastic polymer stress is set to zero in
the whole domain. Then we solve the equations
(9)-(11) and the constraint equation (13) in
order to get the distribution of the fluid velocity
and the angular velocity of the particle, at
the initial time step. At every time step, we
perform the following procedure:

Step 1. The log-conformation tensor at the next
time step, s”*!, is evaluated by integrating the
constitutive equation (12). A semi-implicit first-
order Euler scheme is used:

sn+1

S’I’L
+o" - Vs =~

3 = At+g(G ,8") (16)

where g is the term which appears in the
evolution equation of s.

Step 2. The remaining unknowns
(v,p,G,w)" ™ as well as the Lagrange
multipliers (A) can be found by solving the
Egs. (9)-(11) and (13) using the particle
configuration and the polymer stress evaluated

in the previous two steps:
/ 2nsD(u) : D(v" ) dA—
Q
/ V-up"ttdA + / np(Vu)? : Vot dA
Q Q

- / mp(Vu) (G dA+
Q
(u—(xx7), A" s,

:_/ D(u) : 7"t dA, (17)
Q

/ gV -v" 1 dA =0, (18)
Q

/H:G”“dA-/H:(vv”“)TdA:o,
Q Q

(19)

' (20)

(u7v"+ — (w”+1 X 1))as, =0

The Eq. (16) leads to an unsymmetric linear
system whereas in Step 2 a sparse linear
symmetric system needs to be solved.

Algorithm 1 shows how Step 1 and Step 2
organize themself to discretize and solve the
problem: in particular Step 1 is performed as
described at points 6 and 7 while Step 2 is
performed as described at 8 and 9.

Algorithm 1 Algorithm outline
1: Define problem

Compute Ay and by

o < Aa 1b0

xg < Some initial condition

for t +— 1, num_time_steps do
Compute A¢ and bf from z;_; and z§_,
w (A9 b
Compute A; and b; from x§
Ty < At_lbt

end for

R A A T ol

_
=4
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III. THE COMPUTATIONAL ENVIRONMENT
AND THE PARALLELIZATION DETAILS

HE target computing environment we con-

sider to implement Algorithm 1 is a par-
allel and distributed memory model where we
hide, within the PETSc objects, the details of
internode communications.

PETSc is a suite of data structures and rou-
tines for the scalable parallel solution of scien-
tific applications modeled by partial differential
equations. PETSc is flexible: its modules, that
can be used in application codes written in
Fortran, C and C++, are developed by means
of object-oriented programming techniques [1].

The PETSc hierarchical structure, shown in
figure 1 !, allows the choice of problem de-
pending levels of abstraction; it relies on stan-
dard basic computational (BLAS, LAPACK)
and communication (MPI) kernels, and provides
mechanisms needed within parallel application
codes, such as parallel matrix and vector assem-
bly routines that allow the overlap of commu-
nication and computation, as well as tools for
the parallel management of discretization grids.
Looking at figure 1 from bottom-up, i.e. towards
a growing level of abstraction, Krylov subspace
methods and scalable parallel preconditioners
are located, as the “floor” upon which linear
and non-linear systems solvers rely.

The suite of solvers and preconditioners can
be enriched interfacing PETSc with several
packages, such as, BlockSolve95, SuperLU, Su-
perLU_Dist, Hypre, MUMPS.

We integrate TFEM (Toolkit for Finite Ele-
ment Method [3]) within the PETSc computing
environment TFEM. TFEM is the sequential
software already employed for the discretization
and the solution of this problem. TFEM is
modular and its modules, that can be used
in application codes written in Fortran90/95,
are developed by means of object-oriented pro-
gramming techniques. It consists of:

e a kernel, which includes object
type (i.e. mesh, problem,
sysmatrix and sysvector objects)

http://www.mcs.anl.gov/petsc/petsc-as/features/diagram.html

definition/construction and tool for
Gaussian integration on elements of
different shape;

e some “add-on’s including tools perform-
ing: data visualization, the interface to
external linear equation system solvers
(PARDISO, MUMPS, etc.), the interface
to external software for graphs reordering
(METIS), the definition of details related to
the discretization of some models (Stokes
model, Viscoelastic model, etc.).

Implementation of Algorithm 1 on the target
HPC environment means the use of TFEM at
steps 1, 2, 6, 8 and of PETSc at steps 3,
7, 9. Schematically, we design the following
algorithm:

Algorithm 2 Parallel
TFEM+PETSc

1: TFEM: Define problem
TFEM: Compute Ay and b
PETSc: xg + Ay by
xg < Some initial condition
for t « 1, num_time_steps do

TFEM: Compute A{ and b§ from z;_q

and z§_,

Algorithm  using

SAN AN

7. PETSc: x§ + (A9) "' be

8: TFEM: Compute A; and b; from z
. PETSc: 2; + A; b,

10: end for

To this aim, it is required:

1) to modify TFEM modules to replace orig-
inal data structure used in sysmatrix
and sysvector objects by the PETSc
parallel objects

2) to introduce the parallelism during the
definition of such objects using “row-
block” distribution (points 2, 6, 8 of the
Algorithm 1),

3) to identify the PETSc computational
solvers to use (points 3, 7, 9 of the
Algorithm 1).

IV. PRELIMINARY RESULTS AND
CONCLUSIONS



72

FINAL WORKSHOP OF GRID PROJECTS, "PON RICERCA 2000-2006, AVVISO 1575~

— < o 5 ‘@ " S —
5] Nonlinear Solvers (SNES) Time Steppers (TS)
P
Newton-based Methods dge Time
3 ewto ised Methods Other Buler B.E:\l}:‘.rud l-s;:l:ll:;‘ilnngn Other
Line Search | Trust Region . =
=] =
o Krylov Subspace Methods (KSP)
:13 GMRES ‘ cG | CGS | Bi-CG-STAB l TFQMR | Richardson | Chebychev | Other
ﬂ Preconditioners (PC)
Nl Additive Block E e LU =
'g Schwartz ‘ Jacobi ‘ Jacobi LU 1CC (Sequential only) | ©Others
P Matrices (Mat)
Compressed | Blocked Compressed Block
Sparse Row Sparse Row Diagonal Dense Matrix-free Other
(All) (BALD (BDIAG)

\ Distributed Arrays(DA) } [

Index Sets (IS)

\ Vectors (Vec) \

Block Indices Stride Other

Intlices J

Hierarchical structure of PETSc

Fig. 1.

E show performance results related to
Wthe execution time and speed-up ob-
tained on a test case.

Discretization of the problem described in
section II is performed using a mesh of 15 x
15x 15 elements while the particle is discretized
by using 128 elements (see figure 2 for mesh
representation). This discretization leads to a
sparse and symmetric matrix A, (see figure 3-
(a) for sparsity pattern) with a sparsity pattern
of .03% respet to O (10'?) entries.

This problem has a medium-large level of
complexity (the storage of double precision
floating point numbers not-zero entries of Ay
requires more than 4G B of memory).

We adopt the row-block data distribution,
which is the standard data distribution adopted
in PETSc. In figure 3-(b) we show the block-row
distribution of Ay on 4 processors. As expected,
such data distribution does not take into account
the sparsity pattern of data and it may lead to
workload unbalance.

Tests are carried out on a multi processor
system with the following configuration 2:

Hardware configuration: a blade type sys-
tem composed by:

o 16 blade Dell PowerEdge M600 with,

2http ://scopedma-wn.dma.unina.it

26-02-2009, 15:40:38
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Fig. 2. Representation of discretization mesh

— two quad core Intel Xeon
E5410@2.33GHz processors,

- 16 Gb of RAM,

— A Mellanox Technologies MT25418

Infiniband card,

e A Cisco M SFS7000 switch for internal
Infiniband connectivity,

Software configuration: a cluster for parallel
application based on:

« Scientific Linux 4.6 operating system,

e Mellanox driver and software for Infini-
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Fig. 3. Sparsity pattern of matrix Ag (a), representation
of block-row type distribution of Ag (b)

band connectivity,
o SCoPE Toolkit 1.0 [9](PETSc, ScalLapack,
etc.), Intel compilers and libraries.

In figure 4 we show the execution time (a)
and speed-up (b) versus the processor number. It
is worth to underline that these preliminary ex-
periments focus on the discretization step only.
More precisely, we monitor the performance
gain obtained introducing concurrency during
the discretization step only. As a consequence,
the execution time and the speedup refer to
point 2 only and not to the entire execution of
Algorithm 2.

We appreciate a significative improvement
with respect to the mono processor software.
Observe that the sequential version of TFEM
was not able to perform this computation. As
expected, as the processor number grows, the
speedup line highlights the quite limited ob-
tained performance gain, because of the limited
amount of parallelism that we have introduced.
Moreover the data distribution does not take
into account the sparsity pattern of the matrix.
Of course, a more suitable data distribution will
improve computational workload.

V. FUTURE WORK

He primary intent of this work has been

the exploitation of high performance com-
puting resources in order to reduce the overall
computational cost required for the simulation
of 3D fluido-dynamic processes. We are cur-
rently working on the management of parallel
objects (matrices and vectors) in TFEM “par-
allel” version, and on the selection of the most
efficient linear solver (preconditioned Krylov
subspace methods, based on B-Jacobi, ASM,
or AMG preconditioners, or LU-based direct
methods and Multifrontal methods). Finally, we
will be devoted to the visualization and interpre-
tation of results, and comparison to expectations
(theories, experiments, or other simulations).
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